Numerical Simulations of Large-Scale CO₂ Injection Incorporating Effect of Potential Wellbore Leakage

Rajesh J. Pawar Philip H. Stauffer

Los Alamos National Laboratory

What is this talk about?

- At-scale implementation of CCS would require injection of large volumes of CO₂
- Detailed numerical simulations of CO₂ injection and subsequent migration will be an integral part of long-term performance prediction process
 - One measure of performance will be the system response with cemented/leaking wellbores

Coupled wellbore-reservoir flow simulations for CO₂ storage (I)

- Need to understand and characterize behavior of wellbores during and after injection of large volumes of CO₂
 - Migration through wellbore is dependent on dynamic evolution of near-wellbore conditions including cement degradation
 - Need to effectively & efficiently capture wellbore details including geometry, completions and radial nature of flow
 - Need to simultaneously simulate large-scale reservoir flow
- Princeton (Mike Celia group) has proposed a semianalytical model for injection in reservoir and migration through plugged wellbores (Nordbotten et al)

Coupled wellbore-reservoir flow simulations for CO2 storage (II)

- Traditional approaches to represent detailed wellbores in numerical reservoir simulators have limitations
 - Peaceman approximation:
 - Can not effectively capture near well bore conditions
 - Grid refinement & hybrid grid approaches:
 - Limited flexibility (need a priori knowledge of wellbore location)
 - Require significant effort in re-gridding
 - Usually result in large computational grids

FEHM & its novel wellbore incorporation approach

- Finite Element Heat & Mass (FEHM) numerical simulator
 - Multi-dimensional, multi-phase porous media heat & mass transfer simulator (brine, water, CO₂, methane hydrates)
 - Coupled flow, reactive transport, and stress capabilities
 - Extensively used in ground-water flow-reaction simulations
 - Finite volume method captures complex geology
 - A novel approach to incorporate wellbores
 - · Flexible addition of wellbores to an existing grid
 - Radial representation of wellbore at any desired spatial resolution in a coarser, 3-D grid
 - Computationally efficient simulation of short-term and long-term near wellbore processes

How does the wellbore incorporation algorithm work?

Create the primary reservoir grid (prior to creating input file or in the input file)

• 1	• 2	• 3
• 4	• 5	• 6
• 7	• 8	• 9

Define the wellbore in the input file:

- Specify wellbore location (x,y), wellbore radius
- Specify desired spatial resolution (radial in wellbore vicinity, vertical in the wellbore)
- Specify desired wellbore flow physics

Spatial resolution

Wellbore incorporation algorithm continued

Embed the wellbore in primary grid:

The code identifies connections, modifies resistance terms, adjusts node control volumes

LA-UR-07-3101

Comparing temperature predictions

Computational Times

Hybrid grid – 241 sec New algorithm – 202 sec

Large-scale CO₂ injection: problem definition

- Inject output for a 300 MW power-plant for 50 years
- 10 injectors @ 480 tons/day
- Base case: Permeability: 10⁻¹³ m² (100 mD), porosity = 0.2
- A leaky/plugged well in the center of injectors
- Cement permeability varied (10⁻¹⁰ 10⁻¹⁶ m²), Base case permeability 10⁻¹⁰ m²
- Reservoir corners are water extraction wells at fixed P=20 MPa

Goal: Characterize amount of CO₂ leaving through plugged wellbore under a variety of parameters

Grid with wellbores: plan view

Schematic with wellbores in vertical direction

CO₂ plume in the reservoir (Base Case)

CO₂ plume : X-sectional view (Base Case)

CO₂ fraction near wellbore (Base Case)

Pressure distribution in reservoir (Base Case)

Mass of CO₂ in upper aquifer (Base Case)

CO₂ plume in the upper aquifer (Base Case)

Pressure distribution in upper aquifer (Base Case)

Effect of wellbore cement permeability on mass of CO₂ in top aquifer

Effect of reservoir permeability heterogeneity

Correlation Length (2): 15m

Reservoir Pressure Distribution (50 years)

Mean Log (Perm): -14, Variance Log (Perm): 0.2

LA-UR-07-3101

Reservoir CO₂ Distribution (50 years)

Top aquifer CO₂ Distribution (50 years)

Mean Log (Perm): -13, Variance Log (Perm): 1

Mean Log (Perm): -14, Variance Log (Perm): 0.2

LA-UR-07-3101

Effect of permeability heterogeneity on mass of CO₂ in top aquifer

Time (years) LA-UR-07-3101

Effect of plugged wellbore location on mass of CO₂ in top aquifer

Effect of cement plug dimension on mass of CO₂ in top aquifer

Simulating detailed well-completions

LA-UR-07-3101

Embedded wellbore patch

Wellbore radius: 40 cm Outer patch radius: 10 m

11 radial elements

What impact does an additional aquifer have?

Time dependent mass of CO₂ in upper aquifers

Wellbore cement permeability: 10⁻¹⁰ m²

Time dependent mass of CO₂ in upper aquifers

Wellbore cement permeability: 10⁻¹⁴ m²

Conclusions

- Impact of cemented wellbores on overall system performance of large-scale injection operations needs to be characterized
- Numerical simulations capturing the details of wellbore geometry and dynamic evolution of near-wellbore conditions in a coarse large-scale grid are required
- We have developed numerical capabilities that can be used to simulate detailed wellbore/nearwellbore behavior in a large-scale sequestration operation

Acknowledgements

This work was funded by DOE through ZERT program

FEHM is available free of charge.

Check **fehm.lanl.gov** for further details.

